HMG box proteins bind to four-way DNA junctions in their open conformation.

نویسندگان

  • J R P-ohler
  • D G Norman
  • J Bramham
  • M E Bianchi
  • D M Lilley
چکیده

The HMG box is an 80 amino acid domain found in a variety of eukaryotic chromosomal proteins and transcription factors. Binding to DNA is associated with recognition of structural distortion or manipulation of DNA structure. All the HMG box domains bind to four-way DNA junctions, which must therefore present some feature that is common to the binding targets of this wide variety of proteins. Since the four-way junction can itself adopt a variety of structures depending upon conditions, it is important to determine in which form it exists in complexes with HMG boxes. We find that a single HMG box domain is bound exclusively to the open square form of the junction and that conditions that stabilize the stacked X structure significantly lower affinity for the HMG box. We suggest that the HMG domain binds to one arm of the junction in the minor groove at the point of strand exchange and we present a model for the structure of the complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between HMG boxes.

Many proteins consist of subdomains that can fold and function independently. We investigate here the interaction between the two high mobility group (HMG) box subdomains of the nuclear protein rHMG1. An HMG box is a conserved amino acid sequence of approximately 80 amino acids rich in basic, aromatic and proline side chains that is active in binding DNA in a sequence or structure-specific mann...

متن کامل

HMG1 and 2: architectural DNA-binding proteins.

HMG1 and 2 (high mobility group proteins 1 and 2; renamed HMGB1 and 2) contain two DNA-binding HMG-box domains (A and B) and a long acidic C-terminal domain. They bind DNA without sequence specificity, but have a high affinity for bent or distorted DNA, and bend linear DNA. The individual A and B boxes (which, although broadly similar, show both structural and functional differences) exhibit ma...

متن کامل

The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA.

Upstream binding factor (UBF) is an important transactivator of RNA polymerase I and is a member of a family of proteins that contain nucleic acid binding domains named high-mobility-group (HMG) boxes because of their similarity to HMG chromosomal proteins. UBF is a highly sequence-tolerant DNA-binding protein for which no binding consensus sequence has been identified. Therefore, it has been s...

متن کامل

DNA binding by single HMG box model proteins.

The HMG1/2 family is a large group of proteins that share a conserved sequence of approximately 80 amino acids rich in basic, aromatic and proline side chains, referred to as an HMG box. Previous studies show that HMG boxes can bind to DNA in a structure-specific manner. To define the basis for DNA recognition by HMG boxes, we characterize the interaction of two model HMG boxes, one a structure...

متن کامل

Update on Plant HMG-Box Proteins Plant Proteins Containing High Mobility Group Box DNA-Binding Domains Modulate Different Nuclear Processes1[W]

The HMG-box is an approximately 75-amino acid residue protein domain that occurs in all eukaryotic organisms and was first identified as a characteristic feature of the chromosomal high mobility group (HMG) proteins of the HMGB type. Structural studies have demonstrated that the L-shaped fold of the domain formed by three a-helices is conserved to a greater extent than expected from amino acid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 1998